今日光电
氮化镓(GaN)作为第三代半导体材料的典型代表,具有高击穿电场强度和高热导率 等优异的物理特性,是制作高频微波器件和大功率电力电子器件的理想材料。GaN外延材料的 质量决定了高电子迁移率晶体管(HEMT)的性能,不同材料特征的表征需要不同的测量工具和 技术,进而呈现器件性能的优劣。综述了GaN HEMT外延材料的表征技术,详细介绍了几种表 征技术的应用场景和近年来国内外的相关研究进展,简要总结了外延材料表征技术的发展趋势,为GaN HEMT外延层的材料生长和性能优化提供了反馈和指导。
基于氮化镓(GaN)异质结构的高电子迁移率 晶体管(HEMT)凭借大功率和高频率等优异特性被广泛应用于移动通信和电力电子等领域。随着应用需求的不断提升,对GaN HEMT的要求也 越来越高,这意味着研究人员不仅要在器件结构设计方面,还要在外延材料质量方面做出努力,以提 高器件的性能和可靠性。
材料研究是器件研究的基础,GaN HEMT的性 能在很大程度上取决于材料参数,如外延层的成分、掺杂和缺陷等,外延层的质量直接决定器件的 性能和使用寿命。相比于第一 代半导体 硅(Si) ,GaN晶体质量较差,缺陷更复杂,同时为了 确保具有竞争力的价格,GaN HEMT通常在异质衬 底上制备,导致外延层的缺陷密度非常高。如果穿 透位错等缺陷与沟道内的二维电子气(2DEG)接 触,或连接到衬底和栅金属,会在器件内产生泄漏电流,并损害器件的长期稳定性。
一次完整的外延工艺流程主要包括衬底选择、堆垛层设计和材料生长,对于生长得到的外延片,需要对其进行多维度的测量和表征。而精确的表征 手段能够充分获取材料的物理特性,从而更有效地 指导和优化外延层生长工艺,有利于提高材料的整 体质量,保证外延层能够用于器件制备,器件也能够满足实际的应用需求。加入三代半交流群,加VX:tuoke08。Ⅲ族氮化物材料的表征主要涉及表面形貌、厚度、组分、晶体质量、位错密 度、残余应力、掺杂浓度以及电学特性等多个方 面,这些材料性质主要影响GaN HEMT的工艺稳 定性、器件输出性能以及可靠性等。因此,开展外延层的质量评估工作具有重要意义。
本文综述了GaN HEMT外延材料的表征技术,详细介绍了几种常见表征技术的应用场景和近年来国内外的相关研究进展,简要总结了外延材料表征技术的发展趋势,为GaN HEMT外延层的材料生 长和质量优化提供了反馈和指导。
GaN HEMT外延层的质量直接决定着器件的性 能和寿命,而对外延层表面形貌、材料缺陷以及电学性能的检测分析有助于反馈和优化外延生长工 艺。根据不同的研究需求选择合适的表征技术,将 大大提升外延层的表征效率和精度。
1. 1表面形貌及膜厚表征技术
在GaN外延片制备的过程中,微米量级厚的GaN薄膜通常生长在异质衬底上,由于晶格常数 和热扩散系数不匹配,GaN薄膜中存在大量穿透位错,会进一步影响上层铝镓氮(AlGaN)薄膜晶 体质量和界面2DEG性质。随着纳米成像技术的发 展,精确测量材料表面形貌和薄膜厚度成为了 可能。
光学显微镜一般用于观察外延片宏观表面形 貌,例如大尺度表面起伏或者裂痕,但由于衍射极 限的限制,无法获得纳米尺度的材料形貌信息。原子力显微镜(AFM)也可以实现对样品表面形貌的检测,具有原子级分辨率,并且可以得到三维图 像信息。2020年,C.G.Li等人利用AFM研究了 高温GaN生长过程中V族原料与Ⅲ族原料的摩尔 比(V/Ⅲ比) 对氮(N)极性GaN外延层表面形 貌的影响,发现当V/Ⅲ比较低时,GaN表面出现 明显的起伏。图1给出了V/Ⅲ比分别为128和2 237时的表面形貌,可见表面起伏均沿着GaN <11 - 00>方向,且高V/Ⅲ比条件得到的表面更平 整,在25μm×25μm扫描范围内的均方根粗糙度(Rq,RMS)仅为1. 7 nm。通过化学腐蚀,GaN外延 片中的位错将在表面以凹坑的形式暴露出来。凹坑 可以通过光学 显微镜、AFM、扫 描电 子显微镜(SEM)或透射电子显微镜(TEM) 进行直接观 测。凹坑的尺寸通常正比于伯格斯矢量的大小,因 此对材料表面凹坑的成像还可以用于判断位错的类型。
GaN外延片通常由氮化铝(AlN) 成核层、GaN缓冲层、AlGaN势垒层以及GaN帽层等多层 薄膜组成,不同的薄膜厚度、组分、堆垛方案都将 影响GaN HEMT器件的最终性能。椭偏仪和紫外-可见分光光度计是两种可以进行薄膜厚度测量的仪器,均采用光学无损检测技术,椭偏仪可以得到厚 度和介电常数,而紫外-可见分光光度计可以获得样品厚度,并且谱线形状能在一定程度上反映出晶 体质量的优劣。对于由多层薄膜组成的GaN外 延片,通常利用聚焦离子束(FIB)刻蚀暴露出横 截面,再利用SEM或者TEM对各层薄膜厚度和质量进行直接测量和成像。电子显微技术突破了光学 衍射极限,具有纳米级的空间分辨率,其中TEM比SEM具有更高的分辨能力。2018年,J. T.Chen等人利用低边界热阻AlN成核层获得了高质量的GaN/AlN/碳化硅(SiC)界面,初始外延生长 阶段的缺陷被明显抑制。外延层横截面的TEM表 征结果如图2所示,与传统外延层结构相比,低边 界热阻AlN成核层具有更高的结构完整性,没有 明显晶界出现,GaN外延层与SiC衬底间的面内晶 格失配因此得到了缓解。
对于GaN HEMT外延片的表面形貌表征技术,光学显微镜操作简单,无需真空环境,常用来进行 外延片的初步观测,检查表面是否有污染和大尺度 裂痕。通过AFM和SEM得到的表面形貌图像分辨 率更高,但成像区域范围有限。对于外延片的厚度 表征技术,椭偏仪和紫外-可见分光光度计对样品 无损伤、可重复性高,而结合FIB和TEM对外延 层横截面进行成像,各层薄膜质量和厚度的测量结 果直观、精确,但对样品造成了破坏,技术复杂性较高。
1. 2缺陷、应力及掺杂分析技术
异质外延过程引入的高密度缺陷和残余应力严重影响GaN HEMT器件的性能,是制约其应用的 主要瓶颈。在材料生长或器件工作过程中,缺陷能级态和应力可以在外延层的不同位置产生,通常需 要在材料生长水平上对材料的适用性进行无损评 估,以确保可靠的器件性能。光致发光(PL)、阴 极发光(CL)、 显微拉 曼 光 谱、X射 线 衍 射(XRD)、深能级 瞬 态 谱(DLTS)、深能级 光 谱(DLOS)、二次离子质谱(SIMS)等许多技术已用于缺陷能级态、应力以及掺杂成分的实验表征。
1. 2. 1 PL、CL和显微拉曼光谱
PL、CL和显微拉曼光谱是常用的表征GaN外 延材料缺陷和应力的光学实验手段,杜成林等人在2020年对这几种技术的物理原理及应用进行了较为详细的介绍。最近,研究人员利用光学表 征技术对GaN外延材料进行了一些新的研究。
2021年,A. Goyal等人报道了利用CL技 术,通 过 改 变电 子束的加 速电压,实现了对AlGaN/GaN HEMT结构各层中辐射缺陷的探测。根据电子束的聚焦情况和趋肤深度,在低加速电压(<1 kV) 时,利用CL技术可以分析势垒层和帽层 中的缺陷,而加速电压大于2 kV时,则可以分析 缓冲层中的缺陷,这为CL技术在GaN外延层分层 表征方面的应用提供了新的思路。
2021年,K.Fujii等人对金属有机化学气相沉积(MOCVD)生长的n型GaN进行了PL探测, 发现光谱中2.2 eV附近的黄光强度与激发功率具 有特殊的依赖关系。通过与氢化物气相外延生长的非掺杂GaN进行对比研究,证明了这一现象来自 于氮位的碳(CN)缺陷处俘获的施主-受主对的激子-激子湮灭,而CN缺陷与GaN层堆垛缺陷区域边缘产生的位错有关。
GaN和AlGaN的晶格振动状态对晶体质量、应力和铝(Al) 成分等非常敏感,因此拉曼光谱也被广泛用于GaN外延层应力的表征。目前采 用拉曼散射研究最多的是GaN外延层薄膜的拉曼 声子频移和双轴应力之间的关系,其中纵向光学声子A1(LO)模式和高频声子E2(high)模式的拉曼频 移与应力呈线性关系。2020年,C. C. Lee等人利用拉曼光谱表征了GaN外延层的晶体质量,发现GaN与衬底间的晶格失配产生了拉伸应力,使E2(high)模式发生了红移。通过淀积AlN成核层,引入压缩应力后,E2(high)模式的红移程度 明显减小,表明该方法有效降低了GaN层的拉伸 应力。同时,引入AlN成核层使E2(high)模式的半高全宽(FWHM)减小,表明GaN层的穿透位错密度也随之降低。
1. 2. 2 XRD
X射线的波长接近原子半径,当X射线以一定角度入射到晶体表面时能够产生衍射现象,对衍 射谱的分析可以研究GaN的结构、内部缺陷以及 应力等。XRD是一种非破坏性技术,具有对样品无损伤、无污染、精度高等优点,通常通过测 量布拉格衍射峰的FWHM来评价生长层的结晶质量,具有越小FWHM值的外延层薄膜,其结晶质量越高。根据布拉格公式、纤锌矿结构的面间距公式和维加德公式,结合XRD测量结果,可以比较准确地计算出晶格常数与氮化物合金中的组 分。研究人员还可以通过测量GaN层中对称和 非对称衍射图样的FWHM值来估计刃位错和螺位错的密度。
D.M.Zhao等人在2015年研究了GaN过渡 层对Si衬底上GaN外延层生长的影响,XRD测量 结果表明,引入GaN过渡层并控制其生长条件,可以提高GaN外延层的结晶质量,但过渡层的厚 度具有临界值,超过临界值GaN外延层质量反而降低。通过光学显微镜对裂纹密度进行观测,进一步验证了这一结论。随后,他们在2018年对比了 引入GaN过渡层和AlGaN缓冲层对Si衬底上GaN外延层质量的影响,XRD测量结果表明,引入AlGaN缓冲层得到的GaN外延层质量更高,且显微拉曼光谱表征结果显示,引入AlGaN缓冲层使 后续GaN生长过程中形成了更大的压缩应力,因 此GaN外延层的残余拉伸应力减小。
2016年,Z.Y.He等人探究了低温生长AlN插入层对AlGaN/GaN异质结构性质的影响。对于 不同厚度t的AlN插入层,样品(002)面XRD的衍射角2θ扫描结果如图3(a)所示,所有样品GaN层和AlGaN层的峰位基本一致,通过拟合可以得到AlGaN势垒层中Al组分为0. 25 ~ 0. 26,反 映了AlGaN势垒层生长过程中样品具有良好的均 匀性和稳定性。图3(b)给出了样品(002)和(102)面XRD摇摆曲线的FWHM随AlN层厚度的变化,随 着AlN层 厚 度的增 加,(002)面的FWHM变化不大,而 (102)面的FWHM明显增 加,表明GaN层中的刃位错和混合位错密度显著 增加,最终导致了霍尔测量中AlGaN/GaN异质结 构电子迁移率的降低。要获得好的晶体质量,在外 延生长工艺中往往需要选取一个合适的参数组合,2020年,A.Chatterjee等人讨论了低温GaN缓冲 层生长参数对高温GaN外延层晶体质量的影响,并得到了生长温度、退火时间和GaN缓冲层厚度的最优值组合,同时结合PL和XRD测量结果证 明了此时的GaN外延层具有更低的位错密度。
XRD和TEM都是表征缺陷性质和分布的首选技术。TEM是最直观的表征手段,为外延层中存在缺陷提供了明确的证据,然而,通过TEM获得的信 息是局部的,不能代表样品的整体质量,且样品制备过程耗时较多,同时具有破坏性。相比而言,XRD属于一种无损光谱检测技术,可以通过样品衍 射峰的FWHM来快速评估外延层薄膜质量,并能及时反馈给研究人员,以修正下一次的材料生长条件。
1. 2. 3 DLTS和DLOS
掺杂是改变半导体材料性质的一个重要手段, 对于GaN来说,不同元素的掺杂可以实现n型GaN或p型GaN,以应用于不用的场景。然而,掺 杂也会使材料内部出现新的缺陷,或使固有缺陷的 性质发生变化。DLTS和DLOS是表征缺陷能级位 置、密度及俘获截面的一种技术,通过监控陷阱内 载流子的热激励或光激励辐射,能够实现对整个GaN带隙内深能级缺陷的定量表征。DLTS可以探 测导带底下方或价带顶上方1 eV范围内的陷阱能级,是一种具有很高检测灵敏度的实验方法, 而DLOS可以探测GaN带隙内DLTS无法探测的深能级陷阱态,与DLTS形成互补。
2013年到2015年,Z.Zhang等人分别研究 了高能质子辐射对n型GaN层、p型GaN层内陷阱的影响,以及这些陷阱随退火温度的变化行为。结 合DLTS和DLOS的测量,辐射前后陷阱的能级位置和密度得以确定,不同陷阱对辐射剂量和退火温度的反应不同,表明其物理机制也各不相同。H. Y. Wang等人于2020年研究了不同碳(C)掺杂浓 度对Si衬底GaN层内电子俘获行为的影响,DLTS实验结果表明,高C掺杂浓度的样品在整个正向偏 压范围内表现出较高的电子陷阱密度,来源于缺陷 与缺陷带的电荷交换,而低C掺杂浓度的样品在低 偏压下出现电子陷阱,在高偏压下出现空穴陷阱, 这是由缺陷与价带交换电荷引起的。
2020年,S.Yang等人利用DLTS技术表征 了p型GaN层内的陷阱态,这些陷阱往往作为载 流子俘获中心,影响器件的性能。图4(a)给出 了在不同填充脉冲栅极偏压Vp下的DLTS测量结 果,纵坐标CDLTS表示p型GaN的栅电容。当Vp为正值时,360 K左右的负峰对应电子陷阱态,随着 更多的电子从2DEG沟道注入p型GaN层并被空间电荷 区 俘获,峰 值 振 幅 增 大。Vp为负 值时,340 K处的正峰揭示了p型GaN层中的空穴陷阱 态。假设俘获截面σ与温度T无关,从Arrhenius图的斜率可以推导出电子和空穴陷阱的激活能ET分别为导带底能级EC下方0. 85 eV和价带顶能级EV上方0. 49 eV。从Arrhenius图的线性截距可以得 到 电 子和 空 穴 陷 阱的俘获截 面 分 别为σn = 1×10-15cm2和σp = 1 × 10-19cm2,如图4(b)所示,其中τ为发射时间常数。电子陷阱可能来源于间隙位N或间隙位镓,而空穴陷阱可能来源于N空位或相关配合物。
1. 2. 4 SIMS
SIMS是通过分析初级离子入射样品后溅射产生的二次离子而获取材料信息的一种质谱技术,可以实现对GaN外延层掺杂浓度的测量。2018年,A.Lardeau-Falcy等人研究了退火对Si衬底GaN层中掺杂的镁(Mg)原子再分布的影响。SIMS测量结果表明,Mg原子浓度对其扩散 行为有强烈的影响,在1018cm-3或更低的浓度范围 内,退火到1100 ℃后,Mg原子的分布没有改变。
在1019cm-3或更高的浓度范围内,退火导致Mg原子在[0001] 方向上快速扩散,并在GaN/封盖层 界面处形成Mg原子陷阱。2019年,N.Dharmarasu等人采用不同C掺杂浓度nC的GaN缓冲层,在标准SiC衬底上生长了AlGaN/GaN外延结构,并研究了不同nC对器件电学性能的影响。他们通过 调节不同的生长条件来调节C掺杂情况,并通过SIMS测量样品表面下方不同深度D对应的nC,结 果如图5所示(图中1 mbar = 100 Pa) ,通过改变GaN缓冲层的生长条件,实现了浓度为3×1018cm-3的C掺杂。nC的提升使器件缓冲层泄漏电流和关态 击穿电压得到了显著改善,但电流崩塌也有所增加。
2020年,Y. X. Zhang等人结 合SIMS和DLTS两种测量技术,研究了MOCVD生长的GaN层中铁(Fe)原子的非故意掺杂来源。研究发现,晶圆的溶液清洗过程会在生长界面引入显著的Fe污染,并缓慢地进入GaN外延层,从而导致Fe浓 度高达1017cm-3。此外,在生长过程中,样品基座中的Fe杂质也会进入GaN外延层,形成导带底下 方0. 57 eV的缺陷能级。当采用替代的清洗工艺,并且基座表面被衬底完全覆盖时,Fe掺杂水平可以被显著地抑制两个数量级以上。同年,V. N. Popok等人研究了AlGaN层厚度对AlGaN/GaN界面处2DEG性质的影响,结果表明,厚度小于6~7 nm的AlGaN层会明显受到表面氧化的影响,其成分和晶格结构发生变化,导致界面极化场分布不均匀性,进而影响了2DEG的浓度和迁移率。其 中,SIMS的测量结果既证明了AlGaN层表面氧的出现,又通过监控Al的浓度变化实现了对AlGaN层厚度的测量。
1. 3电学性质测量技术
GaN外延片的电学参数主要包括载流子面密 度ns、载流子迁移率μ以及方块电阻R□,这些参 数直接决定了HEMT器件的输出性能,同时掌握这些参数的测量技术对于GaN外延生长的反馈优 化也具有重要意义。霍尔效应测试仪可以对样品的 电学特性进行分析。
E.C.H.Kyle等人在2014年研究了GaN外延 层的μ对生长温度和穿透位错密度的依赖关系,通 过使用输运方程和电荷平衡方程拟合μ和ns随温 度变化的霍尔测量结果,实现了对GaN薄膜质量的定量表征。2015年,J. Lehmann等人研究了 外延工艺和氟(F) 基Si3N4刻蚀对GaN HEMT的2DEG性能的影响,通过霍尔效应测量R□、μ和ns,证明了位于AlGaN/GaN界面的F缺陷会导致μ和ns的严重恶化,氯基刻蚀去除F致缺陷对μ的提升有积极影响。此外,2 nm厚的AlN间隔层还 可以有效提高ns。2016年,K.Prasertsuk等人在蓝宝石衬底上生长了N极性GaN/AlGaN/GaN异质结,并对其2DEG的性质进行了霍尔效应测量。在室温下,该异质结的ns和μ分别为1. 4×1013cm-2和1 250 cm2/(V·s)。异质结的迁移率随温度的降 低而单调增加,在17 K时达到3 050 cm2/(V·s) 的饱和值,如图6所示,而对于GaN外延层,在低温下电离杂质占主导地位,因此迁移率随着温度的降低而降低。
2017年,M. Horita等人对低掺杂浓度的n型和p型GaN进行了霍尔效应测量。对于n型GaN,其电子迁移率在高温和低温时分别受到光学 声子散射和电离杂质散射的影响。对于p型GaN,施主浓度为3. 2×1016cm-3,300 K时的空穴迁移率为31 cm2/(V·s)。同年,I.Nifa等人开发了一个新的霍尔效应测量系统,对AlGaN/AlN/GaN异质结2DEG的性质进行了测量,他们利用带有永磁 体的探针系统,实现了对200或300 mm晶圆的整 体测量,并能精确获取ns和μ的信息。基于此系 统,他们在2019年对Al0. 25Ga0. 75N/AlN/GaN异质结2DEG的输运性质进行了研究,通过对比常 开型器件在高偏压下的霍尔效应测量和经典C-V测 量结果,证明在AlGaN层上界面形成了导电通道,致使μ发生退化。2020年,D.G. Zhang等人通 过提高AlN成核层表面平整度,在SiC衬底上实现 了厚度仅为250 nm的高质量GaN外延层,其XRD测量结果显示(0002)和(101 - 2)面摇摆曲 线的FWHM分 别为81″和209″,对 于生 长的AlGaN/GaN异质结构,通过霍尔测量得到其2DEG的室温迁移率高达2 238 cm2/(V·s)。
GaN外延层表面形貌、材料质量以及电学性 能的评估分析可以通过不同的技术手段实现,现将本节介绍的几种常见的外延材料表征技术进行简要 总结,如表1所示。在GaN外延材料的表征实验 中,研究人员应综合考虑实验条件和实验目标,选 择合适的技术来开展研究。同时,不同技术的结合 也有助于获得更加真实可靠的结果,为接下来GaN外延材料的质量优化工作提供有力指导。
GaN外延层质量的优劣直接关系到HEMT器 件的性能,各种表征技术实现了对外延层质量的多 角度测量和评估,如何抑制甚至避免缺陷和应力的 产生,优化外延层整体的材料质量和性能就成了研究人员需要考虑的问题。在薄膜生长过程中,腔内 温度和压强等基本参数会影响外延层的性质,此外,原子掺杂和堆垛方案不同也会对外延层的材 料质量和电学性能产生影响。通过对以上条件 的优化,高质量或满足特殊器件性能需求的外延层 将得以实现。
不论是科学研究还是工厂生产,外延材料的质量表征都是不可或缺的一个环节。随着GaN HEMT行业应用场景的拓展,人们对器件性能的需求进一步提升,对外延材料质量的要求也越来越高,表征技术也随之不断发展。从各种表征技术自身能力开发层面看,提升仪器设备探测的可靠性、精度和极 限,依然是未来的发展趋势,例如,继续提升PL或显微拉曼光谱的横向和纵向分辨能力,提升SIMS对不同离子浓度的探测灵敏度等。此外,实现不同表征技术的集成,提高表征效率,也是设 备开发人员关注的方向。从大规模产业化层面看, 基于光学方法的无损伤检测技术对环境要求较低,表征效率更高,更适合应用于生产线,是实现GaN外延材料质量控制、成本节约以及工艺改进的重要手段。未来还可以扩展材料生长过程中原位表征技 术的种类,开发计算机分析程序或软件,实现表征 结果反馈和生长参数调节的智能化。
申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。
----与智者为伍为创新赋能----
联系邮箱:uestcwxd@126.com
QQ:493826566
暂无评论哦,快来评论一下吧!