提起输出10A以上大功率可调稳压电源,凡是有过接触的读者都会联想起:巨大的带抽头的电源变压器、体积很大的散热器,多个大功率调整管固定其上,至少lOW以上的仪表风机不停转动为之散热、加上密布元件的控制板,足以体现出其结构复杂程度。颇为壮观的仪器。很多的开关、电位器、复杂的设定和LED或LCD显示装置似乎很有高科技的味道。
但从基本结构上来看,串联稳压电路实在缺少创意。大型电源上仍然为一品当朝。其效率低、调整管功耗大的缺点。至今为人们所垢病。
能不能采用效率高、管耗小的高频开关电源呢?答案是在很多场合,如无刷电机检测方面。根本无法正常使用,原因很简单,开关电源输出并不纯净,在阻性负载时并无影响,但接PWM方式工作的脉动很大的负载时就力不从心了。
这也是现在大型电源采用串稳结构为主的主要原因,当然厂家也作了很多努力,如为了减少调整管功耗,采用分抽头输出电源变压器。在外部电压需求变化时,继电器控制跟踪调节,自动调整抽头位置。此举大大降低调整管功耗,改善了系统效率。
当然也使原来并不简单的结构更为繁复。
常规结构的大型稳压电源,很难为广大电子爱好者仿制,当然也包括很多在技术力量不足的厂家。
为什么不能够独出心裁,制造出结构简单、实用的大电源来,首先必须在基本构思上有一个突破,路还是有的。
本人曾经供职的公司是无刷电机生产厂家,生产24V一36V/200W自行车电机,每个电机都必须经过加载运行试验,需要12V一45V可调。最大20A测试用可调稳压电源。这个任务落在本人身上。为此。
考虑了很多结构:最后决定采用30A/380V交流调压模块为控制器件。串联在电源变压器初级,变压器次级整流滤波输出相应直流电压。
该模块为双向间闸管全角控制型,控制电压0-5V,控制部份与开关部份绝缘。而且散热器与内部器件绝缘,有很多品牌,我用的杭州西子固态继电器厂产品。
控制方案设计:控制电压由5V电源用电位器分压调节设定,与输出直流电压取样信号比较处理后,送到模块输入端。另外。运行中检测到电流很大时。保护电路随机动作,关闭模块并自锁,直至按下复位钮解除。
电源变压器选用1KW,220V输入、45V输出的控制变压器,为了担心出现晶闸管调节时带来波形崎变。引起异常发热和机振现象。作了多次长时间模拟试验,结果除变压器在低电压大电流时略有振动外,无其他异常迹象。证明变压器可以在晶闸管调压工况下运行。
一、电路元器件介绍如下
UT为50N380V单相调压型晶闸管模块。其工作模式为过零触发,控制电压0-5V控制导通角度。和整流器模块共用200X120铝成品散热器,12V/0.45A风机作为强制风冷风源。B1为1KW/220V控制变压器,次级45V,L1、C1为8A电源滤波器,K2为双刀10A电源开关,C3、R1为消振元件。D1一D4为全波整流二极管模块。C4大容量电解电容,RL为假负荷电阻。
LM2576ADJ、D5、L1、C6、R2、R3、组成12V稳压电源。向风机、ICl、7805供电,7805、C7、C8为5V稳压器组件。其基本电路如图1.
读者可以看出:电路结构非常简单,其电气性能也达到作为电机测试电源的参数要求,能输出20-42V直流电压:调定电压值后。电流从0~18A变化时。电压变化率为O.55V,这虽然相对精密稳压器仅变化0.15V是大了一些,但己经能满足测试要求,因为对厂家来说。该电源无非是一种定量用测试工具,希望结构上牢固皮实、经久耐用作为第一需求:事实上该电源非常合乎这种需求。其中一个电源表现不凡,竟创造了三年无需修理的纪录!
二、电路介绍
图中220电源相线输入B1初级一端。初级另一端接模块晶闸管一侧、晶闸管另一侧接中线,晶闸管在交流波形过零后导通。其导通角度。由控制端输入电平所操控,输入电压幅度0V时,导通角为0,输入5V时全角导通。所以控制电压变化使输入到初级的交流电压相应变化,由于B1初、次具固定的比值,所以耦合到次级的电压产生变化。经整流滤波后得到预期幅值的直流电压。需要说明的是、调压模块的容量选择取裕量较大的原因:模块驱动感性负载。工作在切波状态,耐压、电流值要取很大裕量。
12V电源由LM2576HV和D5,L1、C6等组成:
其输入电源允许在7-60V之间变化。从输入电压上无需另置输入电源。直接取电工作电源的另一个原因实现失电保护工况,发生短路和过流保护动作后。
工作电源失电后使12V电源和5V电源相继失电使系统关闭而停止工作。其机理详见后述。
稳定的12V电压还供给12V风机、ICl和下一级5V稳压电源使用。
IClA、R12、R13、W1、R14组成电压设定信号处理电路,信号输送到IClB同相端,与IClB反相端输入的反馈信号作比较处理后。IClB输出控制信号到模块控制端。IClA工作于跟随器模式。
IClB为减法器模式工作。可以看出设定信号与电压反馈信号相减后放大1.4倍输出。其增益为R15、R16、R19、R18比值决定,且R18=R16,R15=R19,如果设计使增益加大,可能造成过补偿现象出现,负载电流加大时输出电压反而上升。
IClD、R6、R7、R8、C10组成W变换放大电路。
其增益为"倍,IClC、R9、R10、R11组成比较器,一旦电流信号经过I/、,变换放大后电压>lClC反相输入端的基准信号,IClC迅速翻转为高电平,此时D6向C9充电,C9通过R17使7002导通。
IClB输出的控制电压被下拉到O.致使模块晶闸管侧快速关断,此时次级电压消失,工作电源电压为零。
12V和5V因各级滤波电容延迟短时间也放电归零。
此时虽末关闭220电源,但系统已处于失电状态。
整机电流消耗仅为模块晶闸管侧漏电流。短期内要重启时须按K1后使C9放电,并重新关闭开启电源开关K2即可。
D6、C9的设置防止12V电源末失电时。IClC反复翻转,使模块反复开关造成器件损坏!由于D6的单向馈电和C9的存贮效应。使模块保持一定时问关闭状态。从而使系统失电或者排除故障有充裕的时间。
此电源有一个用途是作无刷电机耐久性测试,全天候不间断工作,在夜里常常是无人值守。由于电机损坏、控制器损坏引起短路也常发生。采用上述失电保护方案,可以更好保护设备安全。避免不必要的耗电。
无此要求时:12V电源另由独立电源供电,系统保护后能保持很长时间的自锁,而且复位极为便利,按下K1即可重新工作。无需操作电源开关K2来实现了。所以使用独立电源后的工况与前者相比截然不同!
在一切都必须服从实际需求的前提下,电子设计是有很大的灵活性。可以说,单元电路都是基本元素。一切元素都有各自的特证。关键在在于了解深度,在于优化组合。这就是取胜的游戏规则!
暂无评论哦,快来评论一下吧!