
前言:【核芯观察】是电子发烧友编辑部出品的深度系列专栏,目的是用最直观的方式令读者尽快理解电子产业架构,理清上、中、下游的各个环节,同时迅速了解各大细分环节中的行业现状。本期【核芯观察】的主题是卫星通信产业,对上下游企业、技术、市场等方面进行梳理,分析当前卫星通信产业中芯片的需求趋势。
卫星通信产业链
卫星通信产业链冗长,从卫星制造到发射,从地面设施和终端再到卫星通信运营和服务,每个部分都是一个完整的产业链。我们将卫星制造、发射的部分归纳到卫星通信产业的上游部分,中游则是卫星通信运营和服务,下游是卫星通信地面终端与应用,分析产业链的重要组成部分以及相关主要企业。
上游
卫星制造
通信卫星一般由卫星平台和通信载荷两个部分组成,其中卫星平台是由卫星的主体和保障系统组成,其中包括多个系统,比如姿控系统、电源系统、结构系统、热控系统、星务系统、测控系统等。国内具备卫星平台的企业有中国卫星、天仪研究院、微纳星空、九天微星、长光卫星、银河航天、时空道宇等。
卫星载荷是指在卫星平台的基础上,安装一些设备而满足特定任务或功能的需求。对于通信卫星而言,其载荷就主要包括转发器和天线系统,满足对通信信号中继转发的功能需求。
根据艾瑞咨询的数据,一般情况下定制卫星的成本结构中,平台以及载荷两个部分各占50%;在定制卫星形成一定规模的批量生产时,平台成本被分摊,在单个卫星中的成本占比可以下降到30%;而对于商业卫星公司而言,理想情况下平台占卫星总成本的比例低至20%左右。
目前通信卫星的研发制造成本主要受到生产规模的限制居高不下,但随着近年海外卫星网络公司包括OneWeb、星链等卫星星座组建需求下,低轨通信卫星大批量生产的实现让但卫星的制造成本持续降低。
根据公开信息,去年OneWeb卫星的生产能力可以达到每天1-3颗,单颗卫星成本大约在60万美元,约合人民币408万元(按汇率1:6.8)。星链的卫星产能则高达每日6—7颗,有消息称其单颗卫星制造成本已经降至30万美元左右(约合人民币204万元),当然这与星链的供应链成熟、生产规模大有关。今年3月的最新数据显示,星链在轨卫星已经达到3803颗,累计发射数量更是高达4105颗,如此大批量制造能够有效分摊研发成本,同时也能够持续完善供应链,从多方面压缩成本。
不过高轨通信卫星的造价就要高得多了,由于这种卫星需要的通信容量巨大,整体重量、体积相比低轨通信卫星要大得多,且其卫星平台、载荷都更加复杂,整体数量需求较小、研发成本目前仍居高不下。比如ViaSat的通信卫星位于GEO地球同步轨道,公开信息显示其单卫星造价约为3.6亿美元,约合24.5亿人民币。
国内方面,关于低轨通信卫星的公开信息并不多,电子发烧友网根据银河航天的公开信息估算,去年该公司的第二代低轨宽带通信卫星单颗研制成本在1000万元-1500万元之间,卫星重量与星链一代相近,但通信容量方面要高出一倍以上,性能方面有一定优势。
但显然,成本控制上海外企业要更加成熟。比如OneWeb采用了飞机制造的工业化、自动化、标准化产线,用流水线的方式来提高生产效率以降低成本。星链则通过高比例的自研零部件,包括卫星间激光通信设备、霍尔推进器、专用的芯片、FPGA等,同时在一些部分舍弃了高昂的“宇航级”芯片,采用更加低价的工业级或消费级芯片,以进一步大幅压缩成本。
根据公开信息测算,如果以通信卫星中平台成本占30%、载荷成本占70%计算,卫星载荷成本中天线分系统占到大头的75%。即天线分系统在卫星总成本中占比要超过50%。而其中T/R组件的成本又在天线分系统中占到50%左右,因此如果要谈到通信卫星的部件,必然离不开T/R组件。
图源:铖昌科技招股书
T/R组件一般由数控移相器、数控衰减器、功率放大器、低噪声放大器、限幅器、环形器以及相应的控制电路、电源调制电路等组成,在通信卫星中是相控阵天线的核心部件。同时在通信卫星载荷中的相控阵天线上,对T/R组件的要求是体积小、重量轻、同时需要更高效率降低发热量。
因此,目前T/R组件的趋势是将多个器件集成到单片的MMIC上,另一方面,T/R组件也正在从GaAs材料转向GaN。作为第三代半导体,GaN具备宽禁带的优势,并在射频应用中相比GaAs有更大优势,同等体积下GaN MMIC峰值功率更大、成本更低、效率更高。
由于本身行业壁垒较高,且商业卫星产业仍处于初期阶段,国内星载T/R芯片和T/R组件的玩家较少,主要有铖昌科技、中电科13所/55所、雷电微力科技、国博电子等。
另一方面,FPGA作为处理高速数字信号的重要器件,在通信卫星中也起到重要作用。不过由于卫星所处空间环境存在大量高能粒子以及宇宙射线,有可能导致元器件受损或出现“单粒子反转”等现象,导致数据处理出错,因此在通信卫星中用到的FPGA需要具备抗辐照等特性,也就是所谓“宇航级”芯片。
目前公开信息中,海外的赛灵思、Actel、Microchip(收购Atmel)等都有不少被广泛应用的宇航级FPGA产品,中科院论文还曾经透露,我国的嫦娥四号月球着陆器上就使用了Atmel的CPU和FPGA。国内方面,航天771所(西安微电子技术研究所)、航天772所(北京微电子技术研究所)、珠海欧比特等目前在宇航级FPGA方面较为领先,比如航天772所部分产品在北斗三号卫星、神州14号上已经被应用。
随着在轨卫星数量持续增加,空间频段资源也逐渐稀缺,在卫星宽带的通信频段中,C频段(5GHz)、Ku频段(12-18GHz)、Ka频段(20-30GHz)都逐渐饱和。因此,Q/V频段(39-46GHz/46-75GHz)由于带宽大、容量高等特性,是目前通信卫星领域主要布局的方向。去年9月鹏城实验室搭建的Q/V频段星地通信试验系统成功运行,这套系统由实践二十号卫星的Q/V频段载荷、Q/V频段地面站等组成。
为了应对未来更高速率的卫星通信需求,太赫兹频段(0.1-10THz)也受到了关注,产业链厂商不少也在布局该频段的产品。
卫星总装方面,国内已经有多家公司具备卫星平台方案以及批量化制造能力。包括航天科技集团、航天科工集团、银河航天、时空道宇、微纳星空、九天微星、长光卫星、零重空间等,特别是民营商业卫星公司的发展速度很快,包括银河航天、时空道宇等已经有批量制造的卫星成功入轨。
卫星发射
在卫星发射环节中,包括火箭和发射服务两个部分,其中火箭显然在卫星发射成本中占绝大多数,因此,当前商业通信卫星行业的关注重点,其实是在于火箭的成本。火箭作为一个系统工程,基本可以分为设计、生产和测试三大阶段。
根据艾瑞咨询《2021年中国商业航天产业发展报告》数据,设计阶段的研发费用占一发火箭首型科研经费的70%,生产和测试占比为 30%。
其中,在火箭设计阶段,为了不同的发射任务,所有新型火箭都需要重新设计,其通过设计削减成本的动机较弱,是最需要优化的业务阶段。而生产和设计阶段一般结合在一起,在火箭量产之后,这两个阶段的工作也能够降低一定的成本。但如果在生产工艺和测试方面进行改动,就必须在设计端进行配合,所以在设计端会是降低火箭成本的关键。
对于目前主流的液体火箭来说,在结构上的成本主要分为动力系统、电气系统、结构、地面系统这四个部分。其中动力系统占火箭整体成本的70%,其次电气系统占15%、结构约占8%、地面系统约占7%。
根据艾瑞咨询的数据,SpaceX猎鹰9号火箭发动机成本占比为68%,而中国运载火箭技术研究院的长征五号火箭中发动机成本占比高达80%。
显然,降成本的主要方向必然是动力系统。而以往动力系统都是一次性消耗品,于是可回收火箭一级就是目前的一个发展方向。但从成本的角度来看,火箭的价值基本取决于运载能力,如果要保证垂直回收,那么火箭需要预留额外的30%燃料,再加上一些额外的模块,相同的燃料火箭要损失40%运载能力。因此一些运载能力较弱的火箭其实不适合垂直回收,当然一切都是运载能力与成本的平衡。
目前来看,全球范围内可回收的SpaceX猎鹰系列在发射价格方面有独一档的优势。猎鹰9重型理论最低的LEO轨道运载费用仅1万元人民币左右。当然这个最低的成本计算方式是以单发火箭费用除理论最大LEO运力,但实际应用中不太可能达到最大运力,所以实际每公斤发射费用可能会有较大的浮动。
而国内目前发射成本最低的是长征3B,LEO轨道运载费用最低4.22万元人民币。但值得注意的是,根据需求的不同,以及火箭资源的稀缺性,目前来看整个市场的发射成本不会是评价一款火箭的核心。毕竟LEO轨道每公斤费用高达15.71万元人民币的电子号火箭,近年也是订单不断。商业卫星公司往往不需要用到运力较大的中型火箭,比如猎鹰9类型的火箭一般都是采用“拼单”的形式发射,价格较低的同时,但也受到发射排期等因素影响。因此一些运力较低、相对每公斤发射费用更贵的小型火箭,也受到不少商业卫星公司的青睐。
中游

下游

总结


暂无评论哦,快来评论一下吧!
