11种滤波算法程序大全(含源代码分享)
来源:电子工程专辑 发布时间:2022-06-26 分享至微信

1、限幅滤波法(又称程序判断滤波法)


/*A、名称:限幅滤波法(又称程序判断滤波法)B、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效,如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值。C、优点:能有效克服因偶然因素引起的脉冲干扰。D、缺点:无法抑制那种周期性的干扰。平滑度差。E、整理:shenhaiyu 2013-11-01*/
intFilter_Value;intValue;
voidsetup(){Serial.begin(9600);// 初始化串口通信randomSeed(analogRead(0));// 产生随机种子Value =300;}
voidloop(){Filter_Value = Filter();// 获得滤波器输出值Value = Filter_Value;// 最近一次有效采样的值,该变量为全局变量Serial.println(Filter_Value);// 串口输出delay(50);}
// 用于随机产生一个300左右的当前值intGet_AD(){returnrandom(295,305);}
// 限幅滤波法(又称程序判断滤波法)#defineFILTER_A 1intFilter(){intNewValue;NewValue = Get_AD();if(((NewValue - Value) > FILTER_A) || ((Value - NewValue) > FILTER_A))returnValue;elsereturnNewValue;}



2、中位值滤波法


/*A、名称:中位值滤波法B、方法:连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值。C、优点:能有效克服因偶然因素引起的波动干扰;对温度、液位的变化缓慢的被测参数有良好的滤波效果。D、缺点:对流量、速度等快速变化的参数不宜。E、整理:shenhaiyu 2013-11-01*/
intFilter_Value;
voidsetup(){Serial.begin(9600);// 初始化串口通信randomSeed(analogRead(0));// 产生随机种子}
voidloop(){Filter_Value = Filter();// 获得滤波器输出值Serial.println(Filter_Value);// 串口输出delay(50);}
// 用于随机产生一个300左右的当前值intGet_AD(){returnrandom(295,305);}
// 中位值滤波法#defineFILTER_N 101intFilter(){intfilter_buf[FILTER_N];inti, j;intfilter_temp;for(i =0; i < FILTER_N; i++) {filter_buf[i] = Get_AD();delay(1);}// 采样值从小到大排列(冒泡法)for(j =0; j < FILTER_N -1; j++) {for(i =0; i < FILTER_N -1- j; i++) {if(filter_buf[i] > filter_buf[i +1]) {filter_temp = filter_buf[i];filter_buf[i] = filter_buf[i +1];filter_buf[i +1] = filter_temp;}}}returnfilter_buf[(FILTER_N -1) /2];}



3、算术平均滤波法


/*A、名称:算术平均滤波法B、方法:连续取N个采样值进行算术平均运算:N值较大时:信号平滑度较高,但灵敏度较低;N值较小时:信号平滑度较低,但灵敏度较高;N值的选取:一般流量,N=12;压力:N=4。C、优点:适用于对一般具有随机干扰的信号进行滤波;这种信号的特点是有一个平均值,信号在某一数值范围附近上下波动。D、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用;比较浪费RAM。E、整理:shenhaiyu 2013-11-01*/
intFilter_Value;
voidsetup(){Serial.begin(9600);// 初始化串口通信randomSeed(analogRead(0));// 产生随机种子}
voidloop(){Filter_Value = Filter();// 获得滤波器输出值Serial.println(Filter_Value);// 串口输出delay(50);}
// 用于随机产生一个300左右的当前值intGet_AD(){returnrandom(295,305);}
// 算术平均滤波法#defineFILTER_N 12intFilter(){inti;intfilter_sum =0;for(i =0; i < FILTER_N; i++) {filter_sum += Get_AD();delay(1);}return(int)(filter_sum / FILTER_N);}



4、递推平均滤波法(又称滑动平均滤波法)


/*A、名称:递推平均滤波法(又称滑动平均滤波法)B、方法:把连续取得的N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出原则),把队列中的N个数据进行算术平均运算,获得新的滤波结果。N值的选取:流量,N=12;压力,N=4;液面,N=4-12;温度,N=1-4。C、优点:对周期性干扰有良好的抑制作用,平滑度高;适用于高频振荡的系统。D、缺点:灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差;不易消除由于脉冲干扰所引起的采样值偏差;不适用于脉冲干扰比较严重的场合;比较浪费RAM。E、整理:shenhaiyu 2013-11-01*/
intFilter_Value;
voidsetup(){Serial.begin(9600);// 初始化串口通信randomSeed(analogRead(0));// 产生随机种子}
voidloop(){Filter_Value = Filter();// 获得滤波器输出值Serial.println(Filter_Value);// 串口输出delay(50);}
// 用于随机产生一个300左右的当前值intGet_AD(){returnrandom(295,305);}
// 递推平均滤波法(又称滑动平均滤波法)#defineFILTER_N 12intfilter_buf[FILTER_N +1];intFilter(){inti;intfilter_sum =0;filter_buf[FILTER_N] = Get_AD();for(i =0; i < FILTER_N; i++) {filter_buf[i] = filter_buf[i +1];// 所有数据左移,低位仍掉filter_sum += filter_buf[i];}return(int)(filter_sum / FILTER_N);}



5、中位值平均滤波法(又称防脉冲干扰平均滤波法)


/*A、名称:中位值平均滤波法(又称防脉冲干扰平均滤波法)B、方法:采一组队列去掉最大值和最小值后取平均值,相当于“中位值滤波法”+“算术平均滤波法”。连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值。N值的选取:3-14。C、优点:融合了“中位值滤波法”+“算术平均滤波法”两种滤波法的优点。对于偶然出现的脉冲性干扰,可消除由其所引起的采样值偏差。对周期干扰有良好的抑制作用。平滑度高,适于高频振荡的系统。D、缺点:计算速度较慢,和算术平均滤波法一样。比较浪费RAM。E、整理:shenhaiyu 2013-11-01*/
intFilter_Value;
voidsetup(){Serial.begin(9600);// 初始化串口通信randomSeed(analogRead(0));// 产生随机种子}
voidloop(){Filter_Value = Filter();// 获得滤波器输出值Serial.println(Filter_Value);// 串口输出delay(50);}
// 用于随机产生一个300左右的当前值intGet_AD(){returnrandom(295,305);}
// 中位值平均滤波法(又称防脉冲干扰平均滤波法)(算法1)#defineFILTER_N 100intFilter(){inti, j;intfilter_temp, filter_sum =0;intfilter_buf[FILTER_N];for(i =0; i < FILTER_N; i++) {filter_buf[i] = Get_AD();delay(1);}// 采样值从小到大排列(冒泡法)for(j =0; j < FILTER_N -1; j++) {for(i =0; i < FILTER_N -1- j; i++) {if(filter_buf[i] > filter_buf[i +1]) {filter_temp = filter_buf[i];filter_buf[i] = filter_buf[i +1];filter_buf[i +1] = filter_temp;}}}// 去除最大最小极值后求平均for(i =1; i < FILTER_N -1; i++) filter_sum += filter_buf[i];returnfilter_sum / (FILTER_N -2);}

//  中位值平均滤波法(又称防脉冲干扰平均滤波法)(算法2)/*#define FILTER_N 100int Filter() {int i;int filter_sum = 0;int filter_max, filter_min;int filter_buf[FILTER_N];for(i = 0; i < FILTER_N; i++) {filter_buf[i] = Get_AD();delay(1);}filter_max = filter_buf[0];filter_min = filter_buf[0];filter_sum = filter_buf[0];for(i = FILTER_N - 1; i > 0; i--) {if(filter_buf[i] > filter_max)filter_max=filter_buf[i];else if(filter_buf[i] < filter_min)filter_min=filter_buf[i];filter_sum = filter_sum + filter_buf[i];filter_buf[i] = filter_buf[i - 1];}i = FILTER_N - 2;filter_sum = filter_sum - filter_max - filter_min + i / 2; // +i/2 的目的是为了四舍五入filter_sum = filter_sum / i;return filter_sum;}*/



6、限幅平均滤波法


/*A、名称:限幅平均滤波法B、方法:相当于“限幅滤波法”+“递推平均滤波法”;每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理。C、优点:融合了两种滤波法的优点;对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。D、缺点:比较浪费RAM。E、整理:shenhaiyu 2013-11-01*/
#defineFILTER_N 12intFilter_Value;intfilter_buf[FILTER_N];
voidsetup(){Serial.begin(9600);// 初始化串口通信randomSeed(analogRead(0));// 产生随机种子filter_buf[FILTER_N -2] =300;}
voidloop(){Filter_Value = Filter();// 获得滤波器输出值Serial.println(Filter_Value);// 串口输出delay(50);}
// 用于随机产生一个300左右的当前值intGet_AD(){returnrandom(295,305);}
// 限幅平均滤波法#defineFILTER_A 1intFilter(){inti;intfilter_sum =0;filter_buf[FILTER_N -1] = Get_AD();if(((filter_buf[FILTER_N -1] - filter_buf[FILTER_N -2]) > FILTER_A) || ((filter_buf[FILTER_N -2] - filter_buf[FILTER_N -1]) > FILTER_A))filter_buf[FILTER_N -1] = filter_buf[FILTER_N -2];for(i =0; i < FILTER_N -1; i++) {filter_buf[i] = filter_buf[i +1];filter_sum += filter_buf[i];}return(int)filter_sum / (FILTER_N -1);}



7、一阶滞后滤波法


/*A、名称:一阶滞后滤波法B、方法:取a=0-1,本次滤波结果=(1-a)*本次采样值+a*上次滤波结果。C、优点:对周期性干扰具有良好的抑制作用;适用于波动频率较高的场合。D、缺点:相位滞后,灵敏度低;滞后程度取决于a值大小;不能消除滤波频率高于采样频率1/2的干扰信号。E、整理:shenhaiyu 2013-11-01*/
intFilter_Value;intValue;
voidsetup(){Serial.begin(9600);// 初始化串口通信randomSeed(analogRead(0));// 产生随机种子Value =300;}
voidloop(){Filter_Value = Filter();// 获得滤波器输出值Serial.println(Filter_Value);// 串口输出delay(50);}
// 用于随机产生一个300左右的当前值intGet_AD(){returnrandom(295,305);}
// 一阶滞后滤波法#defineFILTER_A 0.01intFilter(){intNewValue;NewValue = Get_AD();Value = (int)((float)NewValue * FILTER_A + (1.0- FILTER_A) * (float)Value);returnValue;}



8、加权递推平均滤波法


/*A、名称:加权递推平均滤波法B、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权;通常是,越接近现时刻的数据,权取得越大。给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。C、优点:适用于有较大纯滞后时间常数的对象,和采样周期较短的系统。D、缺点:对于纯滞后时间常数较小、采样周期较长、变化缓慢的信号;不能迅速反应系统当前所受干扰的严重程度,滤波效果差。E、整理:shenhaiyu 2013-11-01*/
intFilter_Value;
voidsetup(){Serial.begin(9600);// 初始化串口通信randomSeed(analogRead(0));// 产生随机种子}
voidloop(){Filter_Value = Filter();// 获得滤波器输出值Serial.println(Filter_Value);// 串口输出delay(50);}
// 用于随机产生一个300左右的当前值intGet_AD(){returnrandom(295,305);}
// 加权递推平均滤波法#defineFILTER_N 12intcoe[FILTER_N] = {1,2,3,4,5,6,7,8,9,10,11,12};// 加权系数表intsum_coe =1+2+3+4+5+6+7+8+9+10+11+12;// 加权系数和intfilter_buf[FILTER_N +1];intFilter(){inti;intfilter_sum =0;filter_buf[FILTER_N] = Get_AD();for(i =0; i < FILTER_N; i++) {filter_buf[i] = filter_buf[i +1];// 所有数据左移,低位仍掉filter_sum += filter_buf[i] * coe[i];}filter_sum /= sum_coe;returnfilter_sum;}



9、消抖滤波法


/*A、名称:消抖滤波法B、方法:设置一个滤波计数器,将每次采样值与当前有效值比较:如果采样值=当前有效值,则计数器清零;如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出);如果计数器溢出,则将本次值替换当前有效值,并清计数器。C、优点:对于变化缓慢的被测参数有较好的滤波效果;可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动。D、缺点:对于快速变化的参数不宜;如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统。E、整理:shenhaiyu 2013-11-01*/
intFilter_Value;intValue;
voidsetup(){Serial.begin(9600);// 初始化串口通信randomSeed(analogRead(0));// 产生随机种子Value =300;}
voidloop(){Filter_Value = Filter();// 获得滤波器输出值Serial.println(Filter_Value);// 串口输出delay(50);}
// 用于随机产生一个300左右的当前值intGet_AD(){returnrandom(295,305);}
// 消抖滤波法#defineFILTER_N 12inti =0;intFilter(){intnew_value;new_value = Get_AD();if(Value != new_value) {i++;if(i > FILTER_N) {i =0;Value = new_value;}}elsei =0;returnValue;}



10、限幅消抖滤波法


/*A、名称:限幅消抖滤波法B、方法:相当于“限幅滤波法”+“消抖滤波法”;先限幅,后消抖。C、优点:继承了“限幅”和“消抖”的优点;改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统。D、缺点:对于快速变化的参数不宜。E、整理:shenhaiyu 2013-11-01*/
intFilter_Value;intValue;
voidsetup(){Serial.begin(9600);// 初始化串口通信randomSeed(analogRead(0));// 产生随机种子Value =300;}
voidloop(){Filter_Value = Filter();// 获得滤波器输出值Serial.println(Filter_Value);// 串口输出delay(50);}
// 用于随机产生一个300左右的当前值intGet_AD(){returnrandom(295,305);}
// 限幅消抖滤波法#defineFILTER_A 1#defineFILTER_N 5inti =0;intFilter(){intNewValue;intnew_value;NewValue = Get_AD();if(((NewValue - Value) > FILTER_A) || ((Value - NewValue) > FILTER_A))new_value = Value;elsenew_value = NewValue;if(Value != new_value) {i++;if(i > FILTER_N) {i =0;Value = new_value;}}elsei =0;returnValue;}



11、卡尔曼滤波(非扩展卡尔曼)


#include<Wire.h> // I2C library, gyroscope
// Accelerometer ADXL345#defineACC (0x53)//ADXL345 ACC address#defineA_TO_READ (6)//num of bytes we are going to read each time (two bytes for each axis)

// Gyroscope ITG3200#defineGYRO 0x68// gyro address, binary = 11101000 when AD0 is connected to Vcc (see schematics of your breakout board)#defineG_SMPLRT_DIV 0x15#defineG_DLPF_FS 0x16#defineG_INT_CFG 0x17#defineG_PWR_MGM 0x3E
#defineG_TO_READ 8// 2 bytes for each axis x, y, z

// offsets are chip specific.inta_offx =0;inta_offy =0;inta_offz =0;
intg_offx =0;intg_offy =0;intg_offz =0;////////////////////////
////////////////////////charstr[512];
voidinitAcc(){//Turning on the ADXL345writeTo(ACC,0x2D,0);writeTo(ACC,0x2D,16);writeTo(ACC,0x2D,8);//by default the device is in +-2g range reading}
voidgetAccelerometerData(int* result){intregAddress =0x32;//first axis-acceleration-data register on the ADXL345byte buff[A_TO_READ];readFrom(ACC, regAddress, A_TO_READ, buff);//read the acceleration data from the ADXL345//each axis reading comes in 10 bit resolution, ie 2 bytes.  Least Significat Byte first!!//thus we are converting both bytes in to one intresult[0] = (((int)buff[1]) <<8) | buff[0] + a_offx;result[1] = (((int)buff[3]) <<8) | buff[2] + a_offy;result[2] = (((int)buff[5]) <<8) | buff[4] + a_offz;}
//initializes the gyroscopevoidinitGyro(){/****************************************** ITG 3200* power management set to:* clock select = internal oscillator*     no reset, no sleep mode*   no standby mode* sample rate to = 125Hz* parameter to +/- 2000 degrees/sec* low pass filter = 5Hz* no interrupt******************************************/writeTo(GYRO, G_PWR_MGM,0x00);writeTo(GYRO, G_SMPLRT_DIV,0x07);// EB, 50, 80, 7F, DE, 23, 20, FFwriteTo(GYRO, G_DLPF_FS,0x1E);// +/- 2000 dgrs/sec, 1KHz, 1E, 19writeTo(GYRO, G_INT_CFG,0x00);}

voidgetGyroscopeData(int* result){/**************************************Gyro ITG-3200 I2Cregisters:temp MSB = 1B, temp LSB = 1Cx axis MSB = 1D, x axis LSB = 1Ey axis MSB = 1F, y axis LSB = 20z axis MSB = 21, z axis LSB = 22*************************************/
intregAddress =0x1B;inttemp, x, y, z;byte buff[G_TO_READ];readFrom(GYRO, regAddress, G_TO_READ, buff);//read the gyro data from the ITG3200result[0] = ((buff[2] <<8) | buff[3]) + g_offx;result[1] = ((buff[4] <<8) | buff[5]) + g_offy;result[2] = ((buff[6] <<8) | buff[7]) + g_offz;result[3] = (buff[0] <<8) | buff[1];// temperature}

floatxz=0,yx=0,yz=0;floatp_xz=1,p_yx=1,p_yz=1;floatq_xz=0.0025,q_yx=0.0025,q_yz=0.0025;floatk_xz=0,k_yx=0,k_yz=0;floatr_xz=0.25,r_yx=0.25,r_yz=0.25;//int acc_temp[3];//float acc[3];intacc[3];intgyro[4];floatAxz;floatAyx;floatAyz;floatt=0.025;voidsetup(){Serial.begin(9600);Wire.begin();initAcc();initGyro();}
//unsigned long timer = 0;//float o;voidloop(){getAccelerometerData(acc);getGyroscopeData(gyro);//timer = millis();sprintf(str,"%d,%d,%d,%d,%d,%d", acc[0],acc[1],acc[2],gyro[0],gyro[1],gyro[2]);//acc[0]=acc[0];//acc[2]=acc[2];//acc[1]=acc[1];//r=sqrt(acc[0]*acc[0]+acc[1]*acc[1]+acc[2]*acc[2]);gyro[0]=gyro[0]/14.375;gyro[1]=gyro[1]/ (-14.375);gyro[2]=gyro[2]/14.375;Axz=(atan2(acc[0],acc[2]))*180/PI;Ayx=(atan2(acc[0],acc[1]))*180/PI;/*if((acc[0]!=0)&&(acc[1]!=0)){Ayx=(atan2(acc[0],acc[1]))*180/PI;}else{Ayx=t*gyro[2];}*/Ayz=(atan2(acc[1],acc[2]))*180/PI;//kalman filtercalculate_xz();calculate_yx();calculate_yz();//sprintf(str, "%d,%d,%d", xz_1, xy_1, x_1);//Serial.print(xz);Serial.print(",");//Serial.print(yx);Serial.print(",");//Serial.print(yz);Serial.print(",");//sprintf(str, "%d,%d,%d,%d,%d,%d", acc[0],acc[1],acc[2],gyro[0],gyro[1],gyro[2]);//sprintf(str, "%d,%d,%d",gyro[0],gyro[1],gyro[2]);Serial.print(Axz);Serial.print(",");//Serial.print(Ayx);Serial.print(",");//Serial.print(Ayz);Serial.print(",");//Serial.print(str);//o=gyro[2];//w=acc[2];//Serial.print(o);Serial.print(",");//Serial.print(w);Serial.print(",");Serial.print("\n");
//delay(50);}voidcalculate_xz(){
xz=xz+t*gyro[1];p_xz=p_xz+q_xz;k_xz=p_xz/(p_xz+r_xz);xz=xz+k_xz*(Axz-xz);p_xz=(1-k_xz)*p_xz;}voidcalculate_yx(){yx=yx+t*gyro[2];p_yx=p_yx+q_yx;k_yx=p_yx/(p_yx+r_yx);yx=yx+k_yx*(Ayx-yx);p_yx=(1-k_yx)*p_yx;
}voidcalculate_yz(){yz=yz+t*gyro[0];p_yz=p_yz+q_yz;k_yz=p_yz/(p_yz+r_yz);yz=yz+k_yz*(Ayz-yz);p_yz=(1-k_yz)*p_yz;}

//---------------- Functions//Writes val to address register on ACCvoidwriteTo(intDEVICE, byte address, byte val){Wire.beginTransmission(DEVICE);//start transmission to ACCWire.write(address);// send register addressWire.write(val);// send value to writeWire.endTransmission();//end transmission}

//reads num bytes starting from address register on ACC in to buff arrayvoidreadFrom(intDEVICE, byte address,intnum, byte buff[]){Wire.beginTransmission(DEVICE);//start transmission to ACCWire.write(address);//sends address to read fromWire.endTransmission();//end transmissionWire.beginTransmission(DEVICE);//start transmission to ACCWire.requestFrom(DEVICE, num);// request 6 bytes from ACCinti =0;while(Wire.available())//ACC may send less than requested (abnormal){buff[i] = Wire.read();// receive a bytei++;}Wire.endTransmission();//end transmission}


作者:shenhaiyu

[ 新闻来源:电子工程专辑,更多精彩资讯请下载icspec App。如对本稿件有异议,请联系微信客服specltkj]
存入云盘 收藏
举报
全部评论

暂无评论哦,快来评论一下吧!