MIMO 表示多输入多输出。读/maimo/或/mimo/,通常美国人前者,英国人读后者,国际上研究这一领域的专家较多的都读读/maimo/.通常用于 IEEE 802.11n,但也可以用于其他 802.11 技术。MIMO 有时被称作空间多样,因为它使用多空间通道传送和接收数据。只有站点(移动设备)或接入点(AP)支持 MIMO 时才能部署 MIMO.MIMO 的优点是能够增加无线范围并提高性能。连接到老的 802.11g 接入点的 802.11n 站点能够以更高的速度连接到更远的距离。例如,如果使用老站点,从 25 英尺的距离连接到接入点的速度是 1Mbps;而使用 802.11n MIMO 时站点的速度为 2Mbps.增加到 2Mbps 的范围,允许用户在更远的距离保持连接。无线电发送的信号被反射时,会产生多份信号。每份信号都是一个空间流。使用单输入单输出(SISO)的当前或老系统一次只能发送或接收一个空间流。MIMO 允许多个天线同时发送和接收多个空间流。它允许天线同时传送和接收。
本文提供一些MIMO功率测量的要点及建议,能够降低测试成本、缩短测试时间,以及提高测试精度。
MIMO系统中的信号在分配的时隙内包含调制射频信号的触发信号,因此对功率测量的主要要求就是能够精确、可重复和快速地测量触发内或者触发门控部分的峰值、均值、峰值-均值功率比。仔细选择适当的功率测量工具及方法,可以确保满足严格的MIMO规范。
测量能力
市场上有多种功率测量工具可供使用。首先,我们必须确定需要什么测量功能,以便选择适当的工具。对于研发应用,需要进行高度复杂的分析,因此,我们需要可执行各种测量功能的功率计。除常规的平均功率测量之外,峰值功率计通过查看功率计屏幕上的功率触发包络,可以测量触发门控部分的峰值、均值或者峰值-均值功率比。
此外,用户可以使用互补累计分布函数(CCDF)统计分析,以确保MIMO系统组件不会受到正交频分复用(OFDM)信号高峰值功率的压缩。这种功率计的一个良好示例就是安捷伦P系列功率计(参见图1)。
图1P系列功率计支持峰值均值和峰值-均值功率比测量与CCDF统计分析
另一方面,在制造测试中需要进行较低复杂度的测量,并且通常只对触发平均功率进行简单的pass/fail测试。制造商主要关心在最短时间内生产出产品,并保持低成本。在此情形下,简单的低成本USB功率传感器(例如安捷伦U2000系列)可能是提供经济高效和省时功率测量解决方案的理想选择(参见表1)。
表1P系列功率计和U2000系列USB功率传感器的测量能力
提高精度
MIMO测量的关键参数之一就是测量射频触发或者子帧过程中的信道功率。此参数测量仅在发送信号期间进行,通常称为触发功率。为了获得可重复和精确的触发功率,捕捉稳定、一致的触发信号非常关键。
可用多种触发方式进行稳定的捕捉。三种常见的功率计触发方式包括:(1)被测设备(DUT)提供的外部触发信号,(2)其他同步源或者(3)被测信号的幅度电平。
外部触发源是最常用和首选的触发机制,因为它可以提供最强健的触发形式,以将该仪器采集的数据与所测量的射频触发信号同步。对于基站测量,可从基站本身获得外部触发源。而对于MIMO组件测量,可从提供激励波形的信号发生器中获得外部触发信号。
一旦实现可靠的触发,可用功率计捕捉稳定的触发信号。然后可配置功率计,以精确、可靠地捕捉整个触发的峰值或者平均功率、前导功率或者空闲时间。
OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用技术,实际上OFDM是MCM Multi-CarrierModulation,多载波调制的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰 ICI .每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。
P系列功率计支持以上所有三种触发方法,以高精度采集功率测量值,误差小于0.2dB.对于U2000系列USB功率传感器,需要使用外部触发源捕捉 OFDM信号高峰-均值功率比(PAPR)特性的触发平均功率。与其它功率测量解决方案相比,可用这些传感器获得最适合的精度(参见图2)。
图2安捷伦P系列功率计U2000A USB功率传感器以及其他厂商的宽视频带宽功率计所测得MIMO触发平均测量值比较
多信道并行测试可缩短测试时间、降低测试成本
MIMO系统中发射机和接收机数目的增加会导致测试时间和测试系统复杂度的增加。由于测试成本与测试时间成正比,所以可将费时的功率测试从昂贵的信号分析系统中分离出来,转移到更具经济效益的功率测量系统。然后,可在两个系统上进行并行测试,以使多信道设备的测试时间和成本增加最小化。典型信号分析系统需要花费30000多美元,而典型的高性能峰值功率计大约只花费11000美元,同时拥有可提高MIMO功率测量精度的附加优点。
获得更快的速度
现代功率计整合了各种配置,以优化测量精度或速度。有三种常用方法可以优化速度,其中每种方法各有自己的优缺点:
最常用的方法就是默认模式,该模式应用正常的速度并根据测量的功率电平自动设置平均值数。本方法提供最佳精度和可重复性。测量速度取决于所选择的平均值数,低功率测量的速度也较慢。通常,本方法相对于其他两种方法而言,速度最慢。
可以使用带有触发计数命令的功率计缓冲存储器实现更快的测量速度。功率计的存储器通常填充最新测量数据,直到预定缓冲大小充满为止。然后,用简单的"提取"命令返回测量值。本方法相对于前面一种方法而言速度更快,但是由于处理的采样数据更少,所以精度会稍微降低。
第三种方法提供最快的功率测量速度。由于采用双通道二极管架构,并完全在二极管IV曲线(电流-电压特性曲线)的平方律区域内运行,所以功率计能够将触发功率转换为比例电压波形,以快速地进行信号处理。因此,功率计可提供极其快速和精确的触发平均功率测量,每次读数可小于10ms.
前两种方法可用于P系列功率计,而最后一种方法可在U2000系列USB功率传感器内实施。
结论
安捷伦P系列功率计和U2000系列USB功率传感器是一种理想的解决方案,可以满足严格的MIMO功率测量需求。P系列提供最佳MIMO触发功率测量精度,而U2000系列有助于降低成本和提高MIMO测量速度。
暂无评论哦,快来评论一下吧!