康宁光纤通信市场部
数据量增长不断推动数据中心变革
正如大家所知,技术正在不断驱动数据中心的变革。带来这一变革的驱动因素是什么?2017年,近2.5亿用户首次登录互联网,而这一数量在2018年又增长了7%。每秒中就有11个新用户在看社交媒体,人均每天花在网上的时间约6个小时。
而数据中心不断变革的原因其实很简单,就是为了“利润”!现在,几乎所有公司都有了自己的官网,而2017年电子商务帮助企业获得了近1.5万亿美元。但是,如果你的网站加载时间超过三秒,你可能会失去近四分之一的访问者。仅一秒钟的延迟就能损失11%的页面浏览量和7%的商机!
因此,服务器计算速度在过去数年中不断增长,且在未来还将继续增长。服务器计算速度也推动了收发器的销售和发展。你可以从图1中看到,1G连接迅速成为过去,10G也很快就会消失。25G收发器目前在市场上立足,但是在未来几年将会被50G收发器取代。此外,许多超大型和云数据中心预计在未来几年将采用100 G的服务器端口速度。这些更高的服务器速度可以由2芯或8芯并行光学收发器来实现40G、100G 、200G和400G通道速率。
图 1. 全球服务器出货量(source: Dell’Oro Group)
通过不同的技术实现更高的传输速率
收发器制造商使用几种不同的技术来实现传输速率的增长。
第一种是增加波特率,但这个方法适用于低数据速率。在更高的数据速率传输时,信噪比便成为较难解决的问题。
第二种方法是增加光纤的数量。将2芯扩展至8芯。
第三种方法是,使用多个源和多路复用信号,通常被称为波分复用或解复用。
第四种方法是改变调制的格式,使用脉冲幅度调制(PAM4)来实现更高的数据率。
但是,不管使用哪种方法,最后所使用的光纤链路(如图2),都是2芯或8芯。
图 2. 迁移路径
2芯还是8芯?
那么我们是选择双工(2芯)还是并行传输(8芯)解决方案呢?下面我们将从价格、功耗、密度、和灵活性几个方面来讨论。
首先,2芯双工收发器,必须开发新组件来实现更高的数据速率,而并行光学收发器则可以利用现有技术构建下一代收发器。同时,并行光学收发器可以使用4个无冷却激光发射器或者1个激光发射器搭配波导和调节器使用。因此,8芯并行链路不仅便宜而且整体功耗也较低。
图3. 并行收发器功耗和成本较低
其次,耗电量是数据中心最大的运营费用,因此,采用低能耗的产品解决方案将有助于降低运营成本。一个10 G收发器的功率低于1W,而一个40G并行光学收发器的功耗为1.5W。一个40G收发器相当于4个10G收发器,但是耗电量却减少了60%!而且冷却系统同样需要耗费电力。所以电子设备的节能也将带来冷却系统的节能,从而实现整体的电力节省。
最后,在高密度解决方案中,利用并行光学链接有助于降低总拥有成本。一个36端口高密度QSFP转换卡,每个端口可以用作四个10G端口使用。一个QSFP转换器,可以支持多达144个10G链接,能够减少线卡的数量,减少电力供应、冷却设备、监控设备、控制器和软件许可证的数量!
而为了实现以上这些成本的节约,结构化布线系统必须支持8芯连接!
使用base-8结构化布线系统,将使布线系统更加灵活,升级更高数据速率的网络也将更加平滑,大部分原有的光纤配件和转换器模块都可以继续使用。
Base-8结构化布线
部署结构化布线并不是一个新概念。数据中心正在不断地从以往的临时连接,转向预端接主干光缆等多纤连接器。数据中心光纤布线系统通常采用12到144芯MTP/MPO预端接光缆作为主干光缆。但不断增长的数据中心规模和网络架构的演变,需要更高芯数的光缆来支持,比如288,432,甚至576芯光缆。高芯数缆的使用可以大大增加在有限的桥架空间内部署光缆的密度。同时由于减少缆的数量,从而减少部署时间,降低了安装成本。
图 4 描绘了3种不同芯数光缆的部署场景,占用的线槽空间是相同的
采用370 x 12芯MTP光缆部署,总芯数4,440芯
采用95 x 144芯MTP光缆部署,总芯数13,680芯
采用56 x 288芯MTP光缆部署,总芯数16,128芯
图 4: 采用不同芯数缆在线槽(12” x 6”)内的填充率
数据中心规模逐渐扩大,单个建筑已无法满足超大型数据中心的需求。超大型数据中心往往包括多个建筑,园区网络环境要求布线基础设施包括高芯数预链接光缆或普通光缆作为主干。这些主干光缆芯数需求有时甚至超过864,高达1728或3456芯光纤。
结构化布线方案
满足高芯数部署需求,有多种解决方案,而这些方案都将使用多芯连接器MTP/MPO。这些连接器能带来更快的安装时间,并提供从2芯收发器向8芯收发器演进的路径。利用结构化布线和多芯连接器能够实现分离式的部署,从而降低总拥有成本。
1.高芯数MTP/MPO主干缆
在同一个机房内部署主干缆时,例如从MDA连接至HAD或EDA区域。MTP预端接主干缆是解决高芯数光缆部署的一个关键的组件,同时也是性价比最优的解决方案。并可实现未来平滑迁移至40/100/200/400GbE传输系统。另外,安装MTP光纤预端接主干,终端可以是单个MTP端口,也可以是MTP-LC模块。
图 5. 高芯数预端接缆 (432-芯 MTP-to-MTP )
2.高芯数MTP/MPO尾纤主干缆
尾纤主干缆有两种应用场景:
1) 当光缆路由需要通过较小管道时,且管道尺寸较小不允许MTP接头安全通过。
2) 当部署预端接光缆时,不确定光缆部署的具体长度和路径,或有分支需求。
当安装部署尾纤主干缆时,需要注意保护缆两端暴露的部分,裸纤的一端可以端接快速连接器或者熔接尾纤等。
3.高芯数光缆
某些应用和部署场景可能需要超高芯数光缆。例如当部署864、1728和3456芯光缆时,将会面临路由管道的挑战。带状电缆的外径(OD)较小,较适合部署在拥挤的管路上。
这种缆的末端可以使用多种光纤连接器、尾纤组件、尾纤盒等进行端接。与MTP预端接光缆相比,该类型光缆可能导致部署时间的增加。因为光缆末端现场端接需要大量时间,同时光学性能可能不如工厂预端接光缆。
图 6: 3456芯超高芯数光缆
总结
这里我们讨论了许多话题,当规划一个新的数据中心时,数据中心的管理者必须考虑其规模的持续增长,设备端口带宽的升级、网络架构的变化等因素,这些都将具有挑战性。
暂无评论哦,快来评论一下吧!